myregion.org

“How Shall We Grow?”

Update for:
the Lake County
Board of County Commissioners
June 13, 2006

Phil Laurien, Executive Director, ECFRPC
Looking forward, we know the region will grow.

4 million newcomers will be here by 2050

2000 population: 3.05 million for 7 counties

2050 projected population: 7.2 million

We have choices as to how we grow
Population and Households

2000

County with the largest HH size = Osceola (2.79)
County with the smallest HH size = Volusia (2.32)

<table>
<thead>
<tr>
<th>County</th>
<th>Population</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osceola</td>
<td>62</td>
<td>172</td>
</tr>
<tr>
<td>Lake</td>
<td>90</td>
<td>211</td>
</tr>
<tr>
<td>Seminole</td>
<td>141</td>
<td>365</td>
</tr>
<tr>
<td>Volusia</td>
<td>191</td>
<td>443</td>
</tr>
<tr>
<td>Brevard</td>
<td>203</td>
<td>476</td>
</tr>
<tr>
<td>Polk</td>
<td>192</td>
<td>484</td>
</tr>
<tr>
<td>Orange</td>
<td>343</td>
<td>896</td>
</tr>
</tbody>
</table>

SEVEN COUNTY ORLANDO REGION
Population Expectations Through 2050

SEVEN COUNTY ORLANDO REGION

<table>
<thead>
<tr>
<th>Year</th>
<th>Population in Millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>1,658,000</td>
</tr>
<tr>
<td>1990</td>
<td>2,400,000</td>
</tr>
<tr>
<td>2000</td>
<td>3,050,000</td>
</tr>
<tr>
<td>2010</td>
<td>3,861,000</td>
</tr>
<tr>
<td>2020</td>
<td>4,607,000</td>
</tr>
<tr>
<td>2030</td>
<td>5,291,000</td>
</tr>
<tr>
<td>2040</td>
<td>6,200,000</td>
</tr>
<tr>
<td>2050</td>
<td>7,218,000</td>
</tr>
</tbody>
</table>
Important Considerations

Existing Transportation

- Transportation is dominated by over 26,000 miles of roadways
- 94% of the region's commuters are auto-dependent
- 4 independent public bus systems, LYNX, SCAT, VOTRAN, and WHAT, are funded through general taxes
- 26th largest metropolitan region with 12th largest airport

SEVEN COUNTY ORLANDO REGION

Economics Transportation Development Trend Model Alternatives
Important Considerations

Commuting Patterns

- 80% of work trips within the region are intra-county trips
- 33% of work trips are to and around Orange County

<table>
<thead>
<tr>
<th>Origin</th>
<th>Brevard</th>
<th>Lake</th>
<th>Orange</th>
<th>Osceola</th>
<th>Polk</th>
<th>Seminole</th>
<th>Volusia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard</td>
<td>189,056</td>
<td>153</td>
<td>2,020</td>
<td>330</td>
<td>65</td>
<td>1,111</td>
<td>1,397</td>
</tr>
<tr>
<td>Lake</td>
<td>153</td>
<td>51,842</td>
<td>7,083</td>
<td>1,629</td>
<td>1,005</td>
<td>1,645</td>
<td>574</td>
</tr>
<tr>
<td>Orange</td>
<td>6,122</td>
<td>29,009</td>
<td>375,709</td>
<td>34,065</td>
<td>11,823</td>
<td>80,875</td>
<td>11,011</td>
</tr>
<tr>
<td>Osceola</td>
<td>208</td>
<td>1,110</td>
<td>11,900</td>
<td>20,419</td>
<td>3,069</td>
<td>1,523</td>
<td>104</td>
</tr>
<tr>
<td>Polk</td>
<td>140</td>
<td>140</td>
<td>1,400</td>
<td>563</td>
<td>170,637</td>
<td>258</td>
<td>258</td>
</tr>
<tr>
<td>Seminole</td>
<td>712</td>
<td>92,79</td>
<td>31,926</td>
<td>1,264</td>
<td>358</td>
<td>96,293</td>
<td>16,653</td>
</tr>
<tr>
<td>Volusia</td>
<td>711</td>
<td>1,536</td>
<td>1,413</td>
<td>161</td>
<td>51</td>
<td>2,368</td>
<td>149,837</td>
</tr>
</tbody>
</table>

SEVEN COUNTY ORLANDO REGION

Economics Transportation Development Trend Model Alternatives
Most expensive commuter cities in USA
(Orlando Sentinel June 12, 2006)

1. Atlanta- $5,770*
2. Birmingham Ala.
3. Orlando, FL $5,400*
4. Jacksonville, FL
5. Pensacola, FL

*for 2 persons, 2 cars, for mileage commuted, time spent in traffic and fuel cost
Important Considerations

Imbalanced Transportation System

- The existing bus systems have a steady rider base and provide reliable service.
- Bus system to bus system connectivity is limited, and inter-system service is non-existent.
- Existing mass transit proposals have limited scope.
- The transit systems are not sufficiently designed for a key market: tourists.

SEVEN COUNTY ORLANDO REGION
Transportation: Conclusions

The magnitude of growth projected for the area will overload a road system that is already highly congested.

Transit would strengthen existing centers, anchor future growth, relieve strain on the road system, and help protect the air quality and fragile ecosystem of central Florida.
Developed Land

2000

Total acres: 5,312,627
16% Developed Land
19% Preserved Land
10% Water
55% Undeveloped Land

SEVEN COUNTY ORLANDO REGION

Economics Transportation Development Trend Model Alternatives
Trend Model 2000

3,852,599 developable acres
3,048,058 2000 regional population

2.49 average household size
1,224,120 households

1.44 units per acre
849,350 developed acres

<table>
<thead>
<tr>
<th>Area</th>
<th>Developable</th>
<th>Developed</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard</td>
<td>675,402</td>
<td>419,788</td>
<td>248,147</td>
</tr>
<tr>
<td>Lake</td>
<td>740,599</td>
<td>464,056</td>
<td>325,123</td>
</tr>
<tr>
<td>Seminole</td>
<td>220,743</td>
<td>175,830</td>
<td>83,695</td>
</tr>
<tr>
<td>Orange</td>
<td>642,122</td>
<td>499,004</td>
<td>276,127</td>
</tr>
<tr>
<td>Osceola</td>
<td>964,015</td>
<td>694,027</td>
<td>589,014</td>
</tr>
<tr>
<td>Polk</td>
<td>1,287,102</td>
<td>1,024,637</td>
<td>777,660</td>
</tr>
<tr>
<td>Volusia</td>
<td>782,644</td>
<td>575,257</td>
<td>396,545</td>
</tr>
<tr>
<td>Total</td>
<td>5,312,627</td>
<td>3,852,599</td>
<td>2,696,291</td>
</tr>
</tbody>
</table>

SEVEN COUNTY ORLANDO REGION
Trend Model 2050

3,852,599 developable acres
3,048,058 2000 regional population
7,217,534 2050 regional population
2.49 average household size
2,898,608 households
1.44 units per acre
2,012,922 developed acres

<table>
<thead>
<tr>
<th>County</th>
<th>Area 2000</th>
<th>Developable 2000</th>
<th>Developed 2000</th>
<th>Available 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard</td>
<td>675,402</td>
<td>419,788</td>
<td>264,612</td>
<td>155,176</td>
</tr>
<tr>
<td>Lake</td>
<td>740,599</td>
<td>464,056</td>
<td>355,406</td>
<td>108,650</td>
</tr>
<tr>
<td>Seminole</td>
<td>220,743</td>
<td>175,830</td>
<td>159,393</td>
<td>16,437</td>
</tr>
<tr>
<td>Orange</td>
<td>642,122</td>
<td>499,004</td>
<td>456,260</td>
<td>42,744</td>
</tr>
<tr>
<td>Osceola</td>
<td>964,015</td>
<td>694,027</td>
<td>257,241</td>
<td>436,786</td>
</tr>
<tr>
<td>Polk</td>
<td>1,287,102</td>
<td>1,024,637</td>
<td>461,555</td>
<td>563,082</td>
</tr>
<tr>
<td>Volusia</td>
<td>782,644</td>
<td>575,257</td>
<td>365,414</td>
<td>209,843</td>
</tr>
<tr>
<td>Total</td>
<td>5,312,627</td>
<td>3,852,599</td>
<td>2,319,881</td>
<td>1,532,718</td>
</tr>
</tbody>
</table>

SEVEN COUNTY ORLANDO REGION

Economics Transportation Development Trend Model Alternatives
Choice #1: Do nothing; just continue existing development patterns

Post World War II- Low density suburban sprawl with curvilinear, unconnected streets become the norm for auto oriented development. Open spaces are forgotten, sidewalks and streets are abandoned. Separation of uses by zoning results in every human need resulting in an auto trip, which causes traffic congestion.
Important Considerations

Typical Development: Lake
If we continue existing development patterns:

- **Pro:** We know how that looks and works.
- **Con:** We know how that looks and works.
Con: The 2005 Penn Design study found that current low density development patterns are land consumptive.

- In 1993 there was an average gross residential density of 1.56 dwelling units per acre in the 7 county region.

- By 2000, average residential density had dropped to .99 units per acre, which is a 33% increase in the amount of land needed to house the same population.

- In 2000 there was a total of 849,350 acres of developed land.

- 1.16 million acres of additional developed land will be needed by 2050 to accommodate 4.15 million new residents under current development patterns.
Low density development patterns are expensive to service.

- The Penn Design study estimated it cost $90,000 per acre to provide roads, utilities and other services to newly developed land with current development patterns.

- Developing the 1.16 million acres of new land by 2050 would cost $104 billion.
Penn Design also found that:

- If we change development patterns to allow higher densities on **just 25% of the land area**, then 420,410 acres could accept the 4.15 million new residents.

- Most of that higher density could be in town homes and low rise apartments.

- The cost savings on infrastructure alone **would be enough money to buy all environmentally sensitive lands and pay for a transit system in the high density corridors.**
If we continue existing patterns, it is a matter of local choice how we grow, but there are regional consequences:

- **Traffic.** Low density development is a traffic generator, causing *10 new trips for each new home per day.* Our roads become congested, and ultimately result in gridlock.

- Alternative, mixed use development can generate as little as *4 trips per home per day.* *60% less traffic!*
myregion.org- How Shall We Grow?

- Choice #2- Consider alternative development patterns
 - Which ones?
 - Where?
 - Who gets to choose?
The Transect (by A. Duany) is a gradient of development types.

Preserve Edge General Center Core Downtown

Source: Andres Duany @ dpz.com
Indicators of development patterns

<table>
<thead>
<tr>
<th>Most land Consumptive</th>
<th>Less land consumptive</th>
<th>Least land Consumptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farms</td>
<td>Rural residential</td>
<td>Urban-low</td>
</tr>
<tr>
<td>Conservation</td>
<td>Single family homes</td>
<td>Mixed use</td>
</tr>
<tr>
<td>25+ acre parcels</td>
<td>2-10 acre lots</td>
<td>4-6 units/ac</td>
</tr>
<tr>
<td>Wildlife</td>
<td>100’ + setbacks</td>
<td>15’ setbacks</td>
</tr>
<tr>
<td>Wetlands</td>
<td>Large estates</td>
<td>Detached homes</td>
</tr>
<tr>
<td>Water</td>
<td>Private green</td>
<td>Large lawns</td>
</tr>
<tr>
<td>Parks</td>
<td>Auto only</td>
<td>Small fenced yards</td>
</tr>
<tr>
<td>N/A</td>
<td>Bldg Ht. 35’</td>
<td>Sidewalks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bldg ht. 40’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bldg Ht 40-70’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bldg Ht 70’+</td>
</tr>
</tbody>
</table>
“Smart Growth” is a collection of planning, regulatory, and development practices that use land resources more efficiently through compact building forms, in-fill development and moderation in street and parking standards.”

(The American Planning Association)
One of purposes of Smart Growth is:

“to reduce the outward spread of urbanization, protect sensitive lands and in the process create true neighborhoods with a sense of community.”
Maryland enacted “Smart Growth” legislation in 1997.

Maryland directs state growth related expenditures into locally designated compact growth areas.
Smart growth can mean:

- Conservation subdivisions in rural areas;
- Traditional Neighborhood Developments in urban areas.
- Mixture of stores, offices, residences, schools and related public facilities within walking distance of each other in compact neighborhoods.
Conservation subdivision ↓
Neighborhood ↓

Source: Conservation Design for Subdivisions, Randall Arendt

Traditional

Source: ULI Great Planned Communities
Comparison of Subdivision Designs

Conventional

Conservation

(Source: Randall Arendt, Conservation Design for Subdivisions, Page 60-68)
Traditional Neighborhood Design

- Our oldest Florida cities were based on pedestrian scale, walk-able communities with public green space and mixed uses.
St. Augustine, Florida, 1565. The First American city was a traditional European design mandated by the Spanish Law of the Indies. A public square was surrounded by public buildings, bounded by grid of right angle streets.
1733- Savannah, GA

General James Ogelthorpe’s Georgian Town plan, (approved by King’s Grant) was a traditional grid street design with 24, one-acre park squares.
Neo-Traditional Neighborhood Design

- Architects such as Andres Duany and his firm DPZ of Coral Gables, FL are a school of planners who advocate a return to traditional neighborhood design in new communities.
- They call this “neo traditional design”, taking the best design cues from our best historic communities.
What is a neo-traditional design?

- It is:
 - formal land design
 - rich architectural details
 - dense core
 - grid streets
 - mixed uses
 - guidelines for architecture, materials, and common open space.
 - distance from the center of a neighborhood to its edge is ideally ¼ mile, or a five-minute walk.
Neo Traditional Design
uses form-based codes & pattern books
Neo-traditional design - formal land design
Celebration, FL
10,000 acres, 5-6000 housing units. 50% open space, 2 million Sq. Ft commercial.

Source: ULI Great Planned Communities
Traditional Neighborhood Details:

Mixed Uses

Historic Mount Dora FL ↓ Seaside FL →
Traditional Neighborhood Details: Tree Lawns, Streets, sidewalks and curbs

Tree canopy with tree lawn between the sidewalk and curb. (Monticello, Florida)
Traditional Neighborhood Details: Density

- Typical Density: 4-6 units per gross acre for moderate density TNDs with 2-3 story structures.
- Much higher densities for urban town centers.

Seaside FL density - 4 units per gross acre
Traditional Neighborhood Details: Setbacks
Savannah, GA. (Historic) Traditional Neighborhood Design

0’ setback ↓ 15’ setback from outside edge of sidewalk ↓
Traditional Neighborhood Details: Setbacks

- Minimum house front setbacks (0-15’). Houses with 0’ setback are masonry construction.
- Maximum front setback- 15’ from sidewalk for porch.
- Lots on streets closest to the Transect “Core” have shallowest setbacks. Increase setbacks as you move outward.
- For example:
 - “Core” Downtown - 0’ setback
 - “Center” Residential Blocks 15’ setback
 - “Center” Blocks” 20’ setback
 - “General” 30’ setback
Traditional Neighborhood Details: Privacy/party walls.
Historic: Brick, masonry best materials.

(Savannah, GA.)
Traditional Neighborhood Details - Privacy/party walls

- Fence Detail
Historic and Traditional Neighborhood Details: Streets.
Wide enough for on street parking, at least on one side. R.O.W. typically 60’ with curb and gutter (Savannah, Georgia).
Traditional Neighborhood Details - Architecture - using formed-based codes to describe architectural style and building materials.

- Historic - Defuniak Springs, FL

Traditional Neighborhood Design
Traditional Neighborhood Details: Housing mix
Single family, multi family, multi story & architectural detail create character that works with higher density to create an attractive urban compact design. (Celebration, Florida)
Historic/Traditional Neighborhood Details: Central public open spaces are essential as relief from higher densities.

(Chain of Parks, Tallahassee, FL) (Central Square, Savannah, GA.)
Traditional Neighborhood Details: useable centralized open space

- **Historic** - Forsyth Park, Savannah, GA
- **Neo Traditional Neighborhood** - Rosemary Beach, FL
Traditional Neighborhood Details: pedestrian scale

- Historic- Defuniak Springs, FL Neo-Traditional Neighborhood Seaside FL
TND Details: Streets. Compact blocks. Grid pattern streets, block design purposefully interrupted. Where through streets exist, the best are treed boulevards, with low speeds, stop signs at intersections. Density: 3.8 units per gross acre. Open Space: 21%; each square park is one acre.
Smart Growth

Neo-Traditional design

Big box alternative creates equal value, less traffic.

Source: Frank Elmer, Lincoln Street Studio
High quality renderings are important to show what will be built and how it will look. **Many people may prefer higher density if it comes with higher quality architecture and dedicated useable open space.**

Example: Ladera Ranch, Orange Co. CA, Covenant Hills. Source: ULI Great Planned Communities
Alternative development policies

- Should they be an option in your community?

- What are the benefits? Reduced costs, preserved green space, reduced auto trips if transit can be incorporated in limited high density corridors.

- What are the tradeoffs? Higher density in some areas.

- Bottom line: It is still a matter of local choice in Florida
myregion.org - How Shall We Grow?

- Time to choose your future

- myregion.org offers alternatives to consider

- Let’s play a game to choose how you want your region to look in 2050
Most Land Consumptive

<table>
<thead>
<tr>
<th>Farms + Conservation</th>
<th>Rural Residences</th>
<th>Suburban</th>
<th>Urban-Low</th>
<th>Urban-Mid</th>
<th>Downtown</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A 25+ acre parcels</td>
<td>Single family homes</td>
<td>Single family homes</td>
<td>Mixed Use</td>
<td>Mixed Use</td>
<td>Mixed Use</td>
</tr>
<tr>
<td>Wetlands</td>
<td>2-10 acres</td>
<td>1-3 acres</td>
<td>4-6 acres</td>
<td>7-10 acres</td>
<td>10+ acres</td>
</tr>
<tr>
<td>Water</td>
<td>100'-200' setback</td>
<td>30'-50' setbacks</td>
<td>15 setbacks</td>
<td>0' setback</td>
<td>0' setback</td>
</tr>
<tr>
<td>Parks</td>
<td>Large homes</td>
<td>Detached homes</td>
<td>Detached homes</td>
<td>Attached</td>
<td>Attached</td>
</tr>
<tr>
<td></td>
<td>Auto only</td>
<td>Sidewalks/Leaves</td>
<td>Courtyards</td>
<td>Sidewalks/Bike Lanes</td>
<td>Sidewalks/Bike Lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large homes</td>
<td>Large homes</td>
<td>Autos, Transit</td>
<td>Autos, Transit</td>
</tr>
</tbody>
</table>

Less Land Consumptive

<table>
<thead>
<tr>
<th>Farms + Conservation</th>
<th>Rural Residences</th>
<th>Suburban</th>
<th>Urban-Low</th>
<th>Urban-Mid</th>
<th>Downtown</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Building Ht. 35'</td>
<td>Building Ht. 35'</td>
<td>Building Ht. 40'</td>
<td>Building Ht. 40'</td>
<td>Building Ht. 40'</td>
</tr>
<tr>
<td></td>
<td>0 point</td>
<td>0 point</td>
<td>0 point</td>
<td>0 point</td>
<td>0 point</td>
</tr>
</tbody>
</table>

Least Land Consumptive

<table>
<thead>
<tr>
<th>Farms + Conservation</th>
<th>Rural Residences</th>
<th>Suburban</th>
<th>Urban-Low</th>
<th>Urban-Mid</th>
<th>Downtown</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A 25+ acre parcels</td>
<td>Single family homes</td>
<td>Single family homes</td>
<td>Mixed Use</td>
<td>Mixed Use</td>
<td>Mixed Use</td>
</tr>
<tr>
<td>Wetlands</td>
<td>2-10 acres</td>
<td>1-3 acres</td>
<td>4-6 acres</td>
<td>7-10 acres</td>
<td>10+ acres</td>
</tr>
<tr>
<td>Water</td>
<td>100'-200' setback</td>
<td>30'-50' setbacks</td>
<td>15 setbacks</td>
<td>0' setback</td>
<td>0' setback</td>
</tr>
<tr>
<td>Parks</td>
<td>Large homes</td>
<td>Detached homes</td>
<td>Detached homes</td>
<td>Attached</td>
<td>Attached</td>
</tr>
<tr>
<td></td>
<td>Auto only</td>
<td>Sidewalks/Leaves</td>
<td>Courtyards</td>
<td>Sidewalks/Bike Lanes</td>
<td>Sidewalks/Bike Lanes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large homes</td>
<td>Large homes</td>
<td>Autos, Transit</td>
<td>Autos, Transit</td>
</tr>
</tbody>
</table>

Diagram

- **T1 Preserve**: Single family homes
- **T2 Reserve**: Mixed use
- **T3 Edge**: Rural residential
- **T3 Center**: Suburban
- **T3 General**: Urban-Low
- **T3 Core**: Urban-Mid
- **Downtown**: Mixed use

Map

- **State Highway 19**: Connecting our communities
- **State Hwy 417**: New 'New Urbanism' Publications
- **State Hwy 431**: by Andres Duany, DPZ-Company, 2003
myregion.org - How Shall We Grow?

- Each table designs its own 2050 development “look”.

- Maximum 100 points displayed by colored “new development dots”.

- These dots represent density multiples for purposes of the game.
The choice of providing more density results in more green space being left in 2050.

The choice of providing less density results in less green space in 2050.

Green space dots are different sizes.

Development dots are the same size. Different colors represent different densities.
myregion.org - How Shall We Grow?

- Lake County Results from the May Community Workshops.
Next Steps:

- Your maps will be put into a county “composite” that we will bring back to you for a “Paint the Region” exercise.

- This composite can then be further “adjusted” using the Paint the Region model, fall 2006.
Future Steps

- The final vision selected by Lake County residents in the round two workshops (fall 2006) may guide elected officials in their contemplation of future Lake County development patterns.
Future Steps

- To accomplish a better development pattern result in 2050, Lake County and its cities may wish to amend their comprehensive plans to incorporate their long range vision from the *myregion* project.